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Do Random phenomena exist in Nature?

Is a coin flip random?
Not really, given enough information. But modeling the
outcome as random gives a parsimonious representation
of reality.
Which way will an electron spin? Is it random?
We can’t exclude the possibility of a new theory being
invented someday that would explain the spin, but
modeling it as random is good enough.

Randomness is not total unpredictability; we may quantify that
which is unpredictable.



Do Random phenomena exist in Nature?

If Mathematics and Probability theory
were as well understood several
centuries ago as they are today but the
planetary motion was not understood,
perhaps people would have modeled the
occurrence of a Solar eclipse as a
random event and assigned a probability
based on empirical occurrence.

Subsequently, someone would have revised the model,
observing that a solar eclipse occurs only on a new moon day.
After more time, the phenomenon would be completely
understood and the model changed from a stochastic, or
random, model to a deterministic one.



Do Random phenomena exist in Nature?

Thus, we often come across events whose outcome is
uncertain. The uncertainty could be because of

our inability to observe accurately all the inputs required to
compute the outcome;
excessive cost of observing all the inputs;
lack of understanding of the phenomenon;
dependence on choices to be made in the future, like the
outcome of an election.



Cosmic distance ladder

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

Many objects in the solar system were measured quite accu-
rately by ancient Greeks and Babylonians using geometric and
trigonometric methods.

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt


Cosmic distance ladder

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

Distances to stars in the second rung are found by ideas of par-
allax, calculating the angular deviation over 6 months. First done
by the mathematician Friedrich Bessel; accurate up to about 100
light years, though error is greater than on earlier rungs.

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt


Cosmic distance ladder

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

Distances of moderately far stars can be obtained by a combi-
nation of apparent brightness and distance to nearby stars using
the Hertzsprung-Russell diagram. This method works for stars
up to 300,000 light years and the error is significantly more.

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt


Cosmic distance ladder

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

The distance to the next and final lot of stars is obtained by plot-
ting the oscillations of their brightness. This method works for
stars up to 13,000,000 light years away.

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt


Cosmic distance ladder

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

At every step of the ladder, errors and uncertainties creep in.
Each step inherits all the problems of the ones below, and also
the errors intrinsic to each step tend to get larger for the more
distant objects.

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt


Cosmic distance ladder

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

So we need to understand UNCERTAINTY. And one way of un-
derstanding a notion scientifically is to provide a structure to the
notion. This structure must be rich enough to lend itself to quan-
tification.

http://www.math.ucla.edu/~tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt


Coins etc.

The structure needed to understand a coin toss is
intuitive. We assign a probability 1/2 to the outcome
HEAD and a probability 1/2 to the outcome TAIL of
appearing.

Similarly, for each of the outcomes 1,2,3,4,5,6 of the
throw of a die, we assign a probability 1/6 of
appearing.

Similarly, for each of the outcomes
000001, . . . ,999999 of a lottery ticket, we assign a
probability 1/999999 of being the winning ticket.



Mathematical Formalization: Sample space

More generally, associated with any experiment we have a
sample space Ω consisting of outcomes {o1,o2, . . . ,om}.

Coin Toss: Ω = {H, T}
One die: Ω = {1, 2, 3, 4, 5, 6}
Lottery: Ω = {1, . . ., 999999}

Each outcome is assigned a probability according to the
physical understanding of the experiment.

Coin Toss: pH = 1/2, pT = 1/2
One die: pi = 1/6 for i = 1, . . . ,6
Lottery: pi = 1/999999 for i = 1, . . . ,999999

Note that in each example, the sample space is finite and the
probability assignment is uniform (i.e., the same for every
outcome in the sample space), but this need not be the case.



Mathematical Formalization: Discrete Sample Space

More generally, for an experiment with a finite sample
space Ω = {o1,o2, . . . ,om}, we assign a probability pi to
the outcome oi for every i in such a way that the
probabilities add up to 1, i.e., p1 + · · ·+ pm = 1.
In fact, the same holds for an experiment with a countably
infinite sample space. (Example: Roll one die until you get
your first six.)
A finite or countably infinite sample space is sometimes
called discrete.
Uncountably infinite sample spaces exist, and there are
some additional technical issues associated with them. We
will hint at these issues without discussing them in detail.



Mathematical Formalization: Events

A subset E ⊆ Ω is called an event.
For a discrete sample space, this may if desired be taken
as the mathematical definition of event.

Technical word of warning: If Ω is uncountably infinite, then
we cannot in general allow arbitrary subsets to be called events;
in strict mathematical terms, a probability space consists of:

a sample space Ω,
a set F of subsets of Ω that will be called the events,
a function P that assigns a probability to each event and
that must obey certain axioms.

Generally, we don’t have to worry about these technical details
in practice.



Mathematical Formalization: Random Variables

Back to the dice. Suppose we are gambling with one die and
have a situation like this:

outcome 1 2 3 4 5 6
net dollars earned −8 2 0 4 −2 4

Our interest in the outcome is only through its association with
the monetary amount. So we are interested in a function from
the outcome space Ω to the real numbers R. Such a function is
called a random variable.

Technical word of warning: A random variable must be a
measurable function from Ω to R, i.e., the inverse function
applied to any interval subset of R must be an event in F .
For our discrete sample space, any map X : Ω→ R works.



Mathematical Formalization: Random Variables

Let X be the amount of money won on one throw of a die.
We are interested in {X = x} ⊂ Ω.

{X = 0} for x = 0 Event {3}
{X = 2} for x = 2 Event {2}
{X = 4} for x = 4 Event {4,6}
{X = −2} for x = −2 Event {5}
{X = −8} for x = −8 Event {1}
{X = 10} for x = 10 Event ∅

Notation is informative: Capital “X ” is the random variable
whereas lowercase “x” is some fixed value attainable by the ran-
dom variable X .
Thus X , Y , Z might stand for random variables, while x , y , z
could denote specific points in the ranges of X , Y , and Z , re-
spectively.



Mathematical Formalization: Random Variables

Let X be the amount of money won on one throw of a die.
We are interested in {X = x} ⊂ Ω.

{X = 0} for x = 0 Event {3}
{X = 2} for x = 2 Event {2}
{X = 4} for x = 4 Event {4,6}
{X = −2} for x = −2 Event {5}
{X = −8} for x = −8 Event {1}
{X = 10} for x = 10 Event ∅

The probabilistic properties of a random variable are determined
by the probabilities assigned to the outcomes of the underlying
sample space.



Mathematical Formalization: Random Variables

Let X be the amount of money won on one throw of a die.
We are interested in {X = x} ⊂ Ω.

{X = 0} for x = 0 Event {3}
{X = 2} for x = 2 Event {2}
{X = 4} for x = 4 Event {4,6}
{X = −2} for x = −2 Event {5}
{X = −8} for x = −8 Event {1}
{X = 10} for x = 10 Event ∅

Example: To find the probability that you win 4 dollars, i.e.
P({X = 4}), you want to find the probability assigned to the
event {4,6}. Thus

P{ω ∈ Ω : X (ω) = 4} = P({4,6}) = (1/6) + (1/6) = 1/3.



Mathematical Formalization: Random Variables

P{ω ∈ Ω : X (ω) = 4} = P({4,6}) = 1/6 + 1/6 = 1/3.

Adding 1/6 + 1/6 to find P({4,6}) uses a probability axiom
known as finite additivity:

Given disjoint events A and B, P(A ∪ B) = P(A) + P(B).

In fact, any probability measure must satisfy countable additivity:

Given mutually disjoint events A1,A2, . . ., the probability of the
(countably infinite) union equals the sum of the probabilities.

N.B.: “Disjoint” means ”having empty intersection”.



Mathematical Formalization: Random Variables

P{ω ∈ Ω : X (ω) = 4} = P({4,6}) = 1/6 + 1/6 = 1/3.

{X = x} is shorthand for {w ∈ Ω : X (ω) = x}
If we summarize the possible nonzero values of P({X = x}), we
obtain a function of x called the probability mass function of X ,
sometimes denoted f (x) or p(x) or fX (x):

fX (x) = P({X = x}) =



1/6 for x = 0
1/6 for x = 2
2/6 for x = 4
1/6 for x = −2
1/6 for x = −8
0 for any other value of x .



Mathematical Formalization: Probability Axoims

Any probability function P must satisfy these three axioms,
where A and Ai denote arbitrary events:

P(A) ≥ 0 (Nonnegativity)
If A is the whole sample space Ω then P(A) = 1
If A1,A2, . . . are mutually exclusive (i.e., disjoint, which
means that Ai ∩ Aj = ∅ whenever i 6= j), then

P

(∞⋃
i=1

Ai

)
=
∞∑

i=1

P(Ai) (Countable additivity)

Technical digression: If Ω is uncountably infinite, it turns out
to be impossible to define P satisfying these axioms if “events”
may be arbritrary subsets of Ω.



The Inclusion-Exclusion Rule

For an event A = {oi1 ,oi2 , . . . ,oik}, we obtain

P(A) = pi1 + pi2 + · · ·+ pik .

It is easy to check that if A,B are disjoint, i.e., A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).

More generally, for any two events A and B,

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

A B

Ω

A ∩ B



The Inclusion-Exclusion Rule

Similarly, for three events A, B, C

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

−P(A ∩ B)− P(A ∩ C)− P(B ∩ C)

+P(A ∩ B ∩ C)

A B

C

Ω

This identity has a generalization to n events called the
inclusion-exclusion rule.



Assigning probabilities to outcomes

Simplest case: Due to inherent symmetries, we can model
each outcome in Ω as being equally likely.
When Ω has m equally likely outcomes o1,o2, . . . ,om,

P(A) =
|A|
|Ω|

=
|A|
m
.

Well-known example: If n people permute their n hats
amongst themselves so that all n! possible permutations
are equally likely, what is the probability that at least one
person gets his own hat?
The answer,

1−
n∑

i=0

(−1)i

i!
≈ 1− 1

e
= 0.6321206 . . . ,

can be obtained using the inclusion-exclusion rule; try it
yourself, then google “matching problem” if you get stuck.



Assigning probabilities to outcomes

Example: Toss a coin three times
Define X =Number of Heads in 3 tosses.

X (Ω) = {0,1,2,3}
Ω = {HHH, ←− 3 Heads
HHT ,HTH,THH, ←− 2 Heads
HTT ,THT ,TTH, ←− 1 Head
TTT} ←− 0 Heads
p({ω}) = 1/8 for each ω ∈ Ω f (0) = 1/8, f (1) = 3/8,

f (2) = 3/8, f (3) = 1/8



Conditional Probability

Let X be the number that appears on the throw of a die.
Each of the six outcomes is equally likely, but suppose I
take a peek and tell you that X is an even number.
Question: What is the probability that the outcome belongs
to {1,2,3}?
Given the information I conveyed, the six outcomes are no
longer equally likely. Instead, the outcome is one of
{2,4,6} – each being equally likely.
So conditional on the event {2,4,6}, the probability that
the outcome belongs to {1,2,3} equals 1/3.

More generally, consider an experiment with m equally likely
outcomes and let A and B be two events. Given the information
that B has occurred, the probability that A occurs is called the
conditional probability of A given B and is written P(A | B).



Conditional Probability

In general, when A and B are events such that P(B) > 0, the
conditional probability of A given that B has occurred, P(A | B),
is defined by

P(A | B) =
P(A ∩ B)

P(B)
.

Specific case: Uniform probabilities
Let |A| = k , |B| = `, |A ∩ B| = j , |Ω| = m. Given that B has
happened, the new probability assignment gives a probability
1/` to each of the outcomes in B. Out of these ` outcomes of
B, |A ∩ B| = j outcomes also belong to A. Hence

P(A | B) = j/`.

Noting that P(A ∩ B) = j/m and P(B) = `/m, it follows that

P(A | B) =
P(A ∩ B)

P(B)
.



Conditional Probability

When A and B are events such that P(B) > 0, the
conditional probability of A given that B has occurred,
P(A | B), is defined by

P(A | B) =
P(A ∩ B)

P(B)
.

This leads to the Multiplicative law of probability,

P(A ∩ B) = P(A | B)P(B).

This has a generalization to n events:

P(A1 ∩ A2 ∩ . . . ∩ An)

= P(An | A1, . . . ,An−1)

×P(An−1 | A1, . . . ,An−2)

× . . .× P(A2 | A1)P(A1).



The Law of Total Probability

Let B1, . . . ,Bk be a partition of
the sample space Ω (a partition is
a set of disjoint sets whose union
is Ω), and let A be an arbitrary
event:

!

B
B

B

B

B
B

B1 2
3

4

5

6

7

A

Then
P(A) = P(A ∩ B1) + · · ·+ P(A ∩ Bk ).

This is called the Law of Total Probability. Also, we know that
P(A ∩ Bi) = P(A|Bi)P(Bi), so we obtain an alternative form of
the Law of Total Probability:

P(A) = P(A|B1)P(B1) + · · ·+ P(A|Bk )P(Bk ).



The Law of Total Probability: An Example

Suppose a bag has 6 one-dollar coins, exactly one of which is a
trick coin that has both sides HEADS. A coin is picked at
random from the bag and this coin is tossed 4 times, and each
toss yields HEADS.

Two questions which may be asked here are
What is the probability of the occurrence of
A = {all four tosses yield HEADS}?
Given that A occurred, what is the probability that the coin
picked was the trick coin?



The Law of Total Probability: An Example

What is the probability of the occurrence of
A = {all four tosses yield HEADS}?

This question may be answered by the Law of Total Probability.
Define events

B = coin picked was a regular coin,
Bc = coin picked was a trick coin.

Then B and Bc together form a partition of Ω. Therefore,

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

=

(
1
2

)4

× 5
6

+ 1× 1
6

=
7

32
.

Note: The fact that P(A | B) = (1/2)4 utilizes the notion of
independence, which we will cover shortly, but we may also
obtain this fact using brute-force enumeration of the possible
outcomes in four tosses if B is given.



The Law of Total Probability: An Example

Given that A occurred, what is the probability that the coin
picked was the trick coin?

For this question, we need to find

P(Bc | A) =
P(Bc ∩ A)

P(A)
=

P(A | Bc)P(Bc)

P(A)

=
1× 1

6
7

32
=

16
21
.

Note that this makes sense: We should expect, after four
straight heads, that the conditional probability of holding the
trick coin, 16/21, is greater than the prior probability of 1/6
before we knew anything about the results of the four flips.



Bayes’ Theorem

Suppose we have observed that A occurred.

Let B1, . . . ,Bm be all possible scenarios under which A may
occur, where B1, . . . ,Bm is a partition of the sample space.
To quantify our suspicion that Bi was the cause for the
occurrence of A, we would like to obtain P(Bi | A).
Here, we assume that finding P(A | Bi) is straightforward
for every i . (In statistical terms, a model for how A relies on
Bi allows us to do this.)
Furthermore, we assume that we have some prior notion
of P(Bi) for every i . (These probabilities are simply
referred to collectively as our prior.)

Bayes’ theorem is the prescription to obtain the quantity
P(Bi | A). It is the basis of Bayesian Inference. Simply put, our
goal in finding P(Bi | A) is to determine how our observation A
modifies our probabilities of Bi .



Bayes’ Theorem

Straightforward algebra reveals that

P(Bi | A) =
P(A | Bi)P(Bi)

P(A)
=

P(A | Bi)P(Bi)∑m
j=1 P(A | Bj)P(Bj)

.

The above identity is what we call Bayes’ theorem.

Thomas Bayes (?)

Note the apostrophe after the “s”.
The theorem is named for Thomas
Bayes, an 18th-century British
mathematician and Presbyterian
minister.

The authenticity of the portrait shown
here is a matter of some dispute.



Bayes’ Theorem

Straightforward algebra reveals that

P(Bi | A) =
P(A | Bi)P(Bi)

P(A)
=

P(A | Bi)P(Bi)∑m
j=1 P(A | Bj)P(Bj)

.

The above identity is what we call Bayes’ theorem.

Observing that the denominator above does not depend on i , we
may boil down Bayes’ theorem to its essence:

P(Bi | A) ∝ P(A | Bi)× P(Bi)

= “the likelihood (i.e., the model)”× “the prior”.

Since we often call the left-hand side of the above equation the
posterior probability of Bi , Bayes’ theorem may be expressed
succinctly by stating that the posterior is proportional to the like-
lihood times the prior.



Bayes’ Theorem

Straightforward algebra reveals that

P(Bi | A) =
P(A | Bi)P(Bi)

P(A)
=

P(A | Bi)P(Bi)∑m
j=1 P(A | Bj)P(Bj)

.

The above identity is what we call Bayes’ theorem.

There are many controversies and apparent paradoxes associ-
ated with conditional probabilities. The root cause is sometimes
incomplete specification of the conditions in a particular prob-
lem, though there are also some “paradoxes” that exploit peo-
ple’s seemingly inherent inability to modify prior probabilities cor-
rectly when faced with new information (particularly when those
prior probabilities happen to be uniform).

Try googling “three card problem,” “Monty Hall problem,” or
“Bertrand’s box problem” if you’re curious.



Independence

Suppose that A and B are events such that

P(A | B) = P(A).

In other words, the knowledge that B has occurred has not
altered the probability of A.
The Multiplicative Law of Probability tells us that in this
case,

P(A ∩ B) = P(A)P(B).

When this latter equation holds, A and B are said to be
independent events.

Note: The two equations here are not quite equivalent, since
only the second is well-defined when B has probability zero.
Thus, typically we take the second equation as the
mathematical definition of independence.



Independence: More than two events

It is tempting but not correct to attempt to define mutual
independence of three or more events A, B, and C by
requiring merely

P(A ∩ B ∩ C) = P(A)P(B)P(C).

However, this equation does not imply that, e.g., A and B
are independent.
A sensible definition of mutual independence should
include pairwise independence.
Thus, we define mutual independence using a sort of
recursive definition:

A set of n events is mutually independent if the
probability of its intersection equals the product of
its probabilities and if all subsets of this set
containing from 2 to n − 1 elements are also
mutually independent.



Independence: Random variables

Let X , Y , Z be random variables. Then X , Y , Z are said to
be independent if

P(X ∈ S1 and Y ∈ S2 and Z ∈ S3)

= P(X ∈ S1)P(Y ∈ S2)P(Z ∈ S3)

for all possible measurable subsets (S1,S2,S3) of R.
This notion of independence can be generalized to any
finite number of random variables (even two).
Note the slight abuse of notation:

“P(X ∈ S1)” means “P({ω ∈ Ω : X (ω) ∈ S1})”.



Expectation of a Discrete Random Variable

Let X be a random variable taking values x1, x2 . . . , xn.
The expected value µ of X (also called the mean of X ),
denoted by E(X ), is defined by

µ = E(X ) =
n∑

i=1

xiP(X = xi).

Note: Sometimes physicists write 〈X 〉 instead of E(X ), but
we will use the more traditional statistical notation here.
If Y = g(X ) for a real-valued function g(·), then, by the
definition above,

E(Y ) = E [g(X )] =
n∑

i=1

g(xi)P(X = xi).

Generally, we will simply write E [g(X )] without defining an
intermediate random variable Y = g(X ).



Variance of a Random Variable

The variance σ2 of a random variable is defined by

σ2 = Var(X ) = E
[
(X − µ)2

]
.

Using the fact that the expectation operator is linear — i.e.,

E(aX + bY ) = aE(X ) + bE(Y )

for any random variables X ,Y and constants a,b — it is
easy to show that

E
[
(X − µ)2

]
= E(X 2)− µ2.

This latter form of Var(X ) is usually easier to use for
computational purposes.



Variance of a Random Variable

Let X be a random variable taking values +1 or −1 with
probability 1/2 each.
Let Y be a random variable taking values +10 or −10 with
probability 1/2 each.
Then both X and Y have the same mean, namely 0, but a
simple calculation shows that Var(X ) = 1 and
Var(Y ) = 100.

This simple example illustrates that the variance of a random
variable describes in some sense how spread apart the values
taken by the random variable are.



Not All Random Variables Have An Expectation

As an example of a random variable with no expectation,
suppose that X is defined on some (infinite) sample space Ω so
that for all positive integers i ,

X takes the value

{
2i with probability 2−i−1

−2i with probability 2−i−1.

Do you see why E(X ) cannot be defined in this example?

Both the positive part and the negative part of X have infinite
expectation in this case, so E(X ) would have to be∞−∞,
which is impossible to define.



The binomial random variable

Consider n independent trials where the probability of
“success” in each trial is p ∈ (0,1); let X denote the total
number of successes.

Then P(X = x) =

(
n
x

)
px (1− p)n−x for x = 0,1, . . .n.

X is said to be a binomial random variable with parameters
n and p, and this is written as X ∼ B(n,p).
One may show that E(X ) = np and Var(X ) = np(1− p).
See, for example, A. Mészáros, “On the role of Bernoulli
distribution in cosmology,” Astron. Astrophys., 328, 1-4
(1997). In this article, there are n uniformly distributed
points in a region of volume V = 1 unit. Taking X to be the
number of points in a fixed region of volume p, X has a
binomial distribution. More specifically, X ∼ B(n,p).



The Poisson random variable

Consider a random variable Y such that for some λ > 0,

P(Y = y) = λy

y! e
−λ

for y = 0,1,2, . . ..
Then Y is said to be a Poisson random variable, written
Y ∼ Poisson(λ).
Here, one may show that E(Y ) = λ and Var(Y ) = λ.
If X has Binomial distribution B(n,p) with large n and small
p, then X can be approximated by a Poisson random
variable Y with parameter λ = np, i.e.

P(X ≤ a) ≈ P(Y ≤ a)



A Poisson random variable in the literature

See, for example, M. L. Fudge, T. D. Maclay, “Poisson validity
for orbital debris ...” Proc. SPIE, 3116 (1997) 202-209.

The International Space Station is at risk from orbital debris
and micrometeorite impact. How can one assess the risk of a
micrometeorite impact?

A fundamental assumption underlying risk modeling is that
orbital collision problem can be modeled using a Poisson
distribution. “ ... assumption found to be appropriate based
upon the Poisson ... as an approximation for the binomial
distribution and ... that is it proper to physically model exposure
to the orbital debris flux environment using the binomial
distribution. ”



The Geometric Random Variable

Consider n independent trials where the probability of
“success” in each trial is p ∈ (0,1)

Unlike the binomial case in which the number of trials is
fixed, let X denote the number of failures observed before
the first success.
Then

P(X = x) = (1− p)xp

for x = 0,1, . . ..
X is said to be a geometric random variable with
parameter p.
Its expectation and variance are E(X ) = q

p and
Var(X ) = q

p2 , where q = 1− p.



The Negative Binomial Random Variable

Same setup as the geometric, but let X be the number of
failures before observing r successes.

P(X = x) =

(
r + x − 1

x

)
(1− p)x pr for x = 0,1,2, . . ..

X is said to be a negative binomial distributon with
parameters r and p.
Its expectation and variance are E(X ) = rq

p and
Var(X ) = rq

p2 , where q = 1− p.

The geometric distribution is a special case of the negative
binomial distribution.
See, for example, Neyman, Scott, and Shane (1953), On
the Spatial Distribution of Galaxies: A specific model, ApJ
117: 92–133. In this article, ν is the number of galaxies in
a randomly chosen cluster. A basic assumption is that ν
follows a negative binomial distribution.



Beyond Discreteness

Earlier, we defined a random variable as a function from Ω
to R.
For discrete Ω, this definition always works.
But if Ω is uncountably infinite (e.g., if Ω is an interval in R),
we must be more careful:

Definition: A function X : Ω→ R is said to be
a random variable iff for all real numbers a, the
set {ω ∈ Ω : X (ω) ≤ a} is an event.

Fortunately, we can easily define “event” to be inclusive
enough that the set of random variables is closed under all
common operations.
Thus, in practice we can basically ignore the technical
details on this slide!



Distribution Functions and Density Functions

The function F defined by

F (x) = P(X ≤ x)

is called the distribution function of X , or sometimes the
cumulative distribution function, abbreviated c.d.f.
If there exists a function f such that

F (x) =

∫ x

−∞
f (t)dt for all x ,

then f is called a density of X .

Note: The word “density” in probability is different from the word
“density” in physics.



Distribution Functions and Density Functions

The function F defined by

F (x) = P(X ≤ x)

is called the distribution function of X , or sometimes the
cumulative distribution function, abbreviated c.d.f.
If there exists a function f such that

F (x) =

∫ x

−∞
f (t)dt for all x ,

then f is called a density of X .

Note: It is typical to use capital “F ” for the c.d.f. and lowercase
“f ” for the density function (recall that we earlier used f for the
probability mass function; this creates no ambiguity because a
random variable may not have both a density and a mass func-
tion).



Distribution Functions and Density Functions

The function F defined by

F (x) = P(X ≤ x)

is called the distribution function of X , or sometimes the
cumulative distribution function, abbreviated c.d.f.
If there exists a function f such that

F (x) =

∫ x

−∞
f (t)dt for all x ,

then f is called a density of X .

Note: Every random variable has a uniquely defined c.d.f. F (·)
and F (x) is defined for all real numbers x .
In fact, limx→−∞ F (x) and limx→∞ F (x) always exist and are al-
ways equal to 0 and 1, respectively.



Distribution Functions and Density Functions

The function F defined by

F (x) = P(X ≤ x)

is called the distribution function of X , or sometimes the
cumulative distribution function, abbreviated c.d.f.
If there exists a function f such that

F (x) =

∫ x

−∞
f (t)dt for all x ,

then f is called a density of X .

Note: Sometimes a random variable X is called “continuous”.
This does not mean that X (ω) is a continuous function; rather, it
means that F (x) is a continuous function.
Thus, it is technically preferable to say “X has a continuous dis-
tribution” instead of “X is a continuous random variable.”



The Exponential Distribution

Let λ > 0 be some positive parameter.

The exponential distribution with mean 1/λ has desity

f (x) =

{
λexp(−λx) if x ≥ 0
0 if x < 0.

The exponential density for λ = 1:
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The Exponential Distribution

Let λ > 0 be some positive parameter.

The exponential distribution with mean 1/λ has c.d.f.

F (x) =

∫ x

−∞
f (t) dt =

{
1− exp{−λx} if x > 0
0 otherwise.

The exponential c.d.f. for λ = 1:
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The Normal Distribution

Let µ ∈ R and σ > 0 be two parameters.

The normal distribution with mean µ and variance σ2 has desity

f (x) = ϕµ,σ2(x) =
1√
2πσ

exp
{
−(x − µ)2

2σ2

}
.

The normal density
function for
several values
of (µ, σ2):



The Normal Distribution

Let µ ∈ R and σ > 0 be two parameters.

The normal distribution with mean µ and variance σ2 has a c.d.f.
without a closed form. But when µ = 0 and σ = 1, the c.d.f. is
sometimes denoted Φ(x).

The normal c.d.f.
for several values
of (µ, σ2):



The Lognormal Distribution

Let µ ∈ R and σ > 0 be two parameters.
If X ∼ N(µ, σ2), then exp(X ) has a lognormal distribution
with parameters µ and σ2.
A common astronomical dataset that can be well-modeled
by a shifted lognormal distribution is the set of luminosities
of the globular clusters in a galaxy (technically, in this case
the size of the shift would be a third parameter).
The lognormal distribution with parameters µ and σ2 has
density

f (x) =
1

xσ
√

2π
exp

{
−(ln(x)− µ)2

2σ2

}
for x > 0.

With a shift equal to γ, the density becomes

f (x) =
1

(x − γ)σ
√

2π
exp

{
−(ln(x − γ)− µ)2

2σ2

}
for x > γ.



Expectation for Continuous Distributions

For a random variable X with density f , the expected value
of g(X ), where g is a real-valued function defined on the
range of X , is equal to

E [g(X )] =

∫ ∞
−∞

g(x)f (x) dx .

Two common examples of this formula are given by the
mean of X :

µ = E(X ) =

∫ ∞
−∞

xf (x) dx

and the variance of X :

σ2 = E [(X−µ)2] =

∫ ∞
−∞

(x−µ)2f (x) dx =

∫ ∞
−∞

x2f (x) dx−µ2.



Expectation for Continuous Distributions

For a random variable X with normal density

f (x) =
1√
2πσ

exp
{
−(x − µ)2

2σ2

}
,

we have E(X ) = µ and Var(X ) = E [(X − µ)2] = σ2.
For a random variable Y with lognormal density

f (x) =
1

xσ
√

2π
exp
{
−(ln(x)− µ)2

2σ2

}
for x > 0,

We have
E(X ) = eµ+(σ2/2)

Var(X ) = E [(X − µ)2] = (eσ
2 − 1)e2µ+σ2

.



Limit Theorems

Define a random variable X on the sample space for some
experiment such as a coin toss.
When the experiment is conducted many times, we are
generating a sequence of random variables.
If the experiment never changes and the results of one
experiment do not influence the results of any other, this
sequence is called independent and identically distributed
(i.i.d.).



Limit Theorems

Suppose we gamble on the toss of a coin as follows: If
HEADS appears then you give me 1 dollar and if TAILS
appears then you give me −1 dollar, which means I give
you 1 dollar.
After n rounds of this game, we have generated an i.i.d.
sequence of random variables X1, . . . ,Xn, where each Xi
satisfies

Xi =

{
+1 with prob. 1/2
−1 with prob. 1/2.

Then Sn = X1 + X2 + · · ·+ Xn represents my gain after
playing n rounds of this game. We will discuss some of the
properties of this Sn random variable.



Limit Theorems

Recall: Sn = X1 + X2 + · · ·+ Xn represents my gain after
playing n rounds of this game.
Here are some possible events and their corresponding
probabilities. Note that the proportion of games won is the
same in each case.

OBSERVATION PROBABILITY
S10 ≤ −2 0.38
i.e. I lost at least 6 out of 10 moderate
S100 ≤ −20 0.03
i.e. I lost at least 60 out of 100 unlikely
S1000 ≤ −200 1.36× 10−10

i.e. I lost at least 600 out of 1000 impossible



Limit Theorems

Recall: Sn = X1 + X2 + · · ·+ Xn represents my gain after
playing n rounds of this game.
Here is a similar table:

OBSERVATION PROPORTION Probability
|S10| ≤ 1 |S10|

10 ≤ 0.1 0.25
|S100| ≤ 8 |S100|

100 ≤ 0.08 0.63
|S1000| ≤ 40 |S1000|

1000 ≤ 0.04 0.81
Notice the trend: As n increases, it appears that Sn is more
likely to be near zero and less likely to be extreme-valued.



Law of Large Numbers

Suppose X1,X2, . . . is a sequence of i.i.d. random variables
with E(X1) = µ <∞. Then

X n =
n∑

i=1

Xi

n

converges to µ = E(X1) in the following sense: For any
fixed ε > 0,

P(| X n − µ |> ε) −→ 0 as n→∞.

In words: The sample mean X n converges to the
population mean µ.
It is very important to understand the distinction between
the sample mean, which is a random variable and depends
on the data, and the true (population) mean, which is a
constant.



Law of Large Numbers

In our example in which Sn is the sum of i.i.d. ±1 variables,
here is a plot of n vs. X n = Sn/n for a simulation:

0 200 400 600 800 1000

-1
.0

-0
.5

0.
0

0.
5

Law of Large Numbers

n

X
n



Central Limit Theorem

Let Φ(x) denote the c.d.f. of a standard normal (mean 0,
variance 1) distribution.
Consider the following table, based on our earlier
coin-flipping game:

Event Probability Normal
S1000/

√
1000 ≤ 0 0.513 Φ(0) = 0.500

S1000/
√

1000 ≤ 1 0.852 Φ(1) = 0.841
S1000/

√
1000 ≤ 1.64 0.947 Φ(1.64) = 0.950

S1000/
√

1000 ≤ 1.96 0.973 Φ(1.96) = 0.975

It seems as though S1000/
√

1000 behaves a bit like a
standard normal random variable.



Central Limit Theorem

Suppose X1,X2, . . . is a sequence of i.i.d. random
variables such that E(X 2

1 ) <∞.
Let µ = E(X1) and σ2 = E [(X1 − µ)2]. In our coin-flipping
game, µ = 0 and σ2 = 1.
Let

X n =
n∑

i=1

Xi

n
.

Remember: µ is the population mean and X n is the
sample mean.
Then for any real x ,

P

{
√

n

(
X n − µ
σ

)
≤ x

}
−→ Φ(x) as n→∞.

This fact is called the Central Limit Theorem.



Central Limit Theorem

The CLT is illustrated by the following figure, which gives
histograms based on the coin-flipping game:


