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Model Fitting

Non-linear regression

Density (shape) estimation

Parameter estimation of the assumed model

Goodness of fit

Model Selection

Nested (In quasar spectrum, should one add a broad
absorption line BAL component to a power law continuum?
Are there 4 planets or 6 orbiting a star?)

Non-nested (is the quasar emission process a mixture of
blackbodies or a power law?).

Model misspecification



Model Fitting in Astronomy

Is the underlying nature of an X-ray stellar spectrum a
non-thermal power law or a thermal gas with absorption?

Are the fluctuations in the cosmic microwave background best
fit by Big Bang models with dark energy or with quintessence?

Are there interesting correlations among the properties of
objects in any given class (e.g. the Fundamental Plane of
elliptical galaxies), and what are the optimal analytical
expressions of such correlations?



Model Selection in Astronomy

Interpreting the spectrum of an accreting black hole such as a
quasar. Is it a nonthermal power law, a sum of featureless
blackbodies, and/or a thermal gas with atomic emission and
absorption lines?

Interpreting the radial velocity variations of a large sample of
solar-like stars. This can lead to discovery of orbiting systems
such as binary stars and exoplanets, giving insights into star
and planet formation.

Interpreting the spatial fluctuations in the cosmic microwave
background radiation. What are the best fit combinations of
baryonic, Dark Matter and Dark Energy components? Are Big
Bang models with quintessence or cosmic strings excluded?



A good model should be

Parsimonious (model simplicity)

Conform fitted model to the data (goodness of fit)

Easily generalizable.

Not under-fit that excludes key variables or effects

Not over-fit that is unnecessarily complex by including
extraneous explanatory variables or effects.

Under-fitting induces bias and over-fitting induces high
variability.

A good model should balance the competing objectives of
conformity to the data and parsimony.



Chandra Orion Ultradeep Project (COUP)

$4Bn Chandra X-Ray observatory NASA 1999
1616 Bright Sources. Two weeks of observations in 2003



What is the underlying nature of a stellar spectrum?

Successful model for high signal-to-noise X-ray spectrum.
Complicated thermal model with several temperatures

and element abundances (17 parameters)



COUP source # 410 in Orion Nebula with 468 photons
Thermal model with absorption AV ∼ 1 mag

Fitting binned data using χ2



Best-fit model: A plausible emission mechanism

Model assuming a single-temperature thermal plasma with
solar abundances of elements. The model has three free
parameters denoted by a vector θ.

plasma temperature
line-of-sight absorption
normalization

The astrophysical model has been convolved with complicated
functions representing the sensitivity of the telescope and
detector.

The model is fitted by minimizing chi-square with an iterative
procedure.

θ̂ = arg min
θ
χ2(θ) = arg min

θ

N∑
i=1

(
yi −Mi(θ)

σi

)2

.

Chi-square minimization is a misnomer. It is parameter estimation
by weighted least squares.



Limitations to χ2 ‘minimization’

Fails when bins have too few data points.

Binning is arbitrary. Binning involves loss of information.

Data should be independent and identically distributed.

Failure of i.i.d. assumption is common in astronomical data
due to effects of the instrumental setup; e.g. it is typical to
have ≥ 3 pixels for each telescope point spread function (in an
image) or spectrograph resolution element (in a spectrum).
Thus adjacent pixels are not i.i.d.

Does not provide clear procedures for adjudicating between
models with different numbers of parameters (e.g. one- vs.
two-temperature models) or between different acceptable
models (e.g. local minima in χ2(θ) space).

Unsuitable to obtain confidence intervals on parameters when
complex correlations between the estimators of parameters are
present (e.g. non-parabolic shape near the minimum in χ2(θ)
space).



Alternative approach to the model fitting based on EDF

Fitting to unbinned EDF
Correct model family, incorrect parameter value

Thermal model with absorption set at AV ∼ 10 mag



Misspecified model family!
Power law model with absorption set at AV ∼ 1 mag

Can the power law model be excluded with 99% confidence



EDF based Goodness of Fit

1 Statistics based on EDF

2 Kolmogorov-Smirnov Statistic

3 Processes with estimated parameters

4 Bootstrap
Parametric bootstrap
Nonparametric bootstrap

5 Confidence Limits Under Model Misspecification



Empirical Distribution Function



Statistics based on EDF

Kolmogrov-Smirnov: Dn = sup
x
|Fn(x)− F (x)|,

sup
x

(Fn(x)− F (x))+, sup
x

(Fn(x)− F (x))−

H(y) = P (Dn ≤ y), 1−H(dn(α)) = α

Cramér-von Mises:

∫
(Fn(x)− F (x))2 dF (x)

Anderson - Darling:

∫
(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x)

is more sensitive at tails.

These statistics are distribution free if F is continuous &
univariate.

No longer distribution free if either F is not univariate or
parameters of F are estimated.



K-S Confidence bands

F = Fn ± dn(α)



Kolmogorov-Smirnov Table

KS probabilities are invalid
when the model parameters
are estimated from the
data. Some astronomers use
them incorrectly.

– Lillifors (1964)



Multivariate Case

Example – Paul B. Simpson (1951)

F (x, y) = ax2y + (1− a)y2x, 0 < x, y < 1

(X1, Y1) ∼ F . F1 denotes the EDF of (X1, Y1)

P (|F1(x, y)− F (x, y)| < .72, for all x, y)

> .065 if a = 0, (F (x, y) = y2x)

< .058 if a = .5, (F (x, y) =
1

2
xy(x+ y))

Numerical Recipe’s treatment of a 2-dim KS test is mathematically
invalid.



Processes with estimated parameters

{F (.; θ) : θ ∈ Θ} – a family of continuous distributions

Θ is a open region in a p-dimensional space.

X1, . . . , Xn sample from F

Test F = F (.; θ) for some θ = θ0

Kolmogorov-Smirnov, Cramér-von Mises statistics, etc., when θ is
estimated from the data, are continuous functionals of the
empirical process

Yn(x; θ̂n) =
√
n
(
Fn(x)− F (x; θ̂n)

)
θ̂n = θn(X1, . . . , Xn) is an estimator θ

Fn – the EDF of X1, . . . , Xn



Bootstrap

Gn is an estimator of F , based X1, . . . , Xn.

X∗1 , . . . , X
∗
n i.i.d. from Gn

θ̂∗n = θn(X∗1 , . . . , X
∗
n)

F (.; θ) is Gaussian with θ = (µ, σ2)

If θ̂n = (X̄n, s
2
n), then

θ̂∗n = (X̄∗n, s
∗2
n )

Parametric bootstrap if Gn = F (.; θ̂n)

X∗1 , . . . , X
∗
n i.i.d. F (.; θ̂n)

Nonparametric bootstrap if Gn = Fn (EDF)



Parametric bootstrap

X∗1 , . . . , X
∗
n sample generated from F (.; θ̂n)

In Gaussian case θ̂∗n = (X̄∗n, s
∗2
n ).

Both √
n sup

x
|Fn(x)− F (x; θ̂n)|

and √
n sup

x
|F ∗n(x)− F (x; θ̂∗n)|

have the same limiting distribution

In XSPEC package, the parametric bootstrap is command FAKEIT,
which makes Monte Carlo simulation of specified spectral model.

Numerical Recipes describes a parametric bootstrap (random
sampling of a specified pdf) as the ‘transformation method’ of
generating random deviates.



Nonparametric bootstrap

X∗1 , . . . , X
∗
n sample from Fn

i.e., a simple random sample from X1, . . . , Xn.

Bias correction

Bn(x) =
√
n(Fn(x)− F (x; θ̂n))

is needed.

Both √
n sup

x
|Fn(x)− F (x; θ̂n)|

and
sup
x
|
√
n
(
F ∗n(x)− F (x; θ̂∗n)

)
−Bn(x)|

have the same limiting distribution.

XSPEC does not provide a nonparametric bootstrap capability



Need for such bias corrections in special situations are well
documented in the bootstrap literature.

χ2 type statistics – (Babu, 1984, Statistics with linear
combinations of chi-squares as weak limit. Sankhyā, Series A, 46,
85-93.)

U -statistics – (Arcones and Giné, 1992, On the bootstrap of U
and V statistics. The Ann. of Statist., 20, 655–674.)



Model misspecification

X1, . . . , Xn data from unknown H.

H may or may not belong to the family {F (.; θ) : θ ∈ Θ}

H is closest to F (., θ0)

Kullback-Leibler information∫
h(x) log

(
h(x)/f(x; θ)

)
dν(x) ≥ 0∫

| log h(x)|h(x)dν(x) <∞∫
h(x) log f(x; θ0)dν(x) = maxθ∈Θ

∫
h(x) log f(x; θ)dν(x)



Confidence limits under model misspecification

For any 0 < α < 1,

P
(√
n supx |Fn(x)−F (x; θ̂n)−(H(x)−F (x; θ0))| ≤ C∗α

)
−α→ 0

C∗α is the α-th quantile of

supx |
√
n
(
F ∗n(x)− F (x; θ̂∗n)

)
−
√
n
(
Fn(x)− F (x; θ̂n)

)
|

This provide an estimate of the distance between the true
distribution and the family of distributions under consideration.



Similar conclusions can be drawn for von Mises-type distances∫ (
Fn(x)− F (x; θ̂n)− (H(x)− F (x; θ0))

)2
dF (x; θ0),

∫ (
Fn(x)− F (x; θ̂n)− (H(x)− F (x; θ0))

)2
dF (x; θ̂n).

EDF based fitting requires little or no probability distributional
assumptions such as Gaussianity or Poisson structure.



Discussion so far

K-S goodness of fit is often better than Chi-square test.

K-S cannot handle heteroscadastic errors

Anderson-Darling is better in handling the tail part of the
distributions.

K-S probabilities are incorrect if the model parameters are
estimated from the same data.

K-S does not work in more than one dimension.

Bootstrap helps in the last two cases.

So far we considered model fitting part.

We shall now discuss model selection issues.



MLE and Model Selection

1 Model Selection Framework

2 Hypothesis testing for model selection: Nested models

3 MLE based hypotheses tests

4 Limitations

5 Penalized likelihood

6 Information Criteria based model selection

Akaike Information Criterion (AIC)

Bayesian Information Criterion (BIC)



Model Selection Framework (based on likelihoods)

Observed data D

M1, . . . ,Mk are models for D under consideration

Likelihood f(D|θj ;Mj) and loglikelihood
`(θj) = log f(D|θj ;Mj) for model Mj .

f(D|θj ;Mj) is the probability density function (in the
continuous case) or probability mass function (in the discrete
case) evaluated at data D.
θj is a pj dimensional parameter vector.

Example

D = (X1, . . . , Xn), Xi, i.i.d. N(µ, σ2) r.v. Likelihood

f(D|µ, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}

Most of the methodology can be framed as a comparison between
two models M1 and M2.



Hypothesis testing for model selection: Nested models

The model M1 is said to be nested in M2, if some coordinates of
θ1 are fixed, i.e. the parameter vector is partitioned as

θ2 = (α, γ) and θ1 = (α, γ0)

γ0 is some known fixed constant vector.

Comparison of M1 and M2 can be viewed as a classical hypothesis
testing problem of H0 : γ = γ0.

Example

M2 Gaussian with mean µ and variance σ2

M1 Gaussian with mean 0 and variance σ2

The model selection problem here can be framed in terms of
statistical hypothesis testing H0 : µ = 0, with free parameter σ.

Hypothesis testing is a criteria used for comparing two models.
Classical testing methods are generally used for nested models.



MLE based hypotheses tests

H0 : θ = θ0, θ̂ MLE

`(θ) loglikelihood at θ

θ

Lo
gl
ik
el
ih
oo
d

θ0 θ̂

Wald Test

Based on the (standardized)
distance between θ0 and θ̂

Likelihood Ratio Test

Based on the distance from
`(θ0) to `(θ̂).

Rao Score Test

Based on the gradient of
the loglikelihood (called the
score function) at θ0.

These three MLE based tests are equivalent to the first order of
asymptotics, but differ in the second order properties.
No single test among these is uniformly better than the others.



Wald Test Statistic

Wn = (θ̂n − θ0)2/V ar(θ̂n) ∼ χ2

The standardized distance between θ0 and the MLE θ̂n.

In general V ar(θ̂n) is unknown

V ar(θ̂) ≈ 1/I(θ̂n), I(θ) is the Fisher’s information

Wald test rejects H0 : θ = θ0 when I(θ̂n)(θ̂n − θ0)2 is large.

Likelihood Ratio Test Statistic

`(θ̂n)− `(θ0)

Rao’s Score (Lagrangian Multiplier) Test Statistic

S(θ0) =
1

nI(θ0)

(
n∑
i=1

f ′(Xi; θ0)

f(Xi; θ0)

)2

X1, . . . , Xn are independent random variables with a common
probability density function f(.; θ).



Example

In the case of data from normal (Gaussian) distribution with
known variance σ2,

f(y; θ) =
1√
2πσ

exp

{
− 1

2σ2
(y − θ)2

}
, I(θ) =

1

σ2

S(θ0) =
1

nI(θ0)

(
n∑
i=1

f ′(Xi; θ0)

f(Xi; θ0)

)2

=
n

σ2
(X̄n − θ0)2

Regression Context

y1, . . . , yn data with Gaussian residuals, then the loglikelihood ` is

`(β) = log

n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(yi − x′iβ)2

}



Limitations

Caution/Objections

M1 and M2 are not treated symmetrically as the null
hypothesis is M1.

Cannot accept H0

Can only reject or fail to reject H0.

Larger samples can detect the discrepancies and more likely to
lead to rejection of the null hypothesis.



Penalized likelihood

If M1 is nested in M2, then the largest likelihood achievable
by M2 will always be larger than that of M1.

Adding a penalty on larger models would achieve a balance
between over-fitting and under-fitting, leading to the so called
Penalized Likelihood approach.

Information criteria based model selection procedures are
penalized likelihood procedures.



Information Criteria based model selection

The traditional maximum likelihood paradigm provides a
mechanism for estimating the unknown parameters of a model
having a specified dimension and structure.

Hirotugu Akaike
(1927-2009)

Akaike extended this paradigm in 1973 to the case, where the
model dimension is also unknown.



Akaike Information Criterion – (AIC)

Grounding in the concept of entropy, Akaike proposed
an information criterion (AIC), now popularly known as
Akaike Information Criterion, where both model estimation
and selection could be simultaneously accomplished.

AIC for model Mj is −2`(θ̂j) + 2kj . The term 2`(θ̂j) is known
as the goodness of fit term, and 2kj is known as the penalty.

The penalty term increase as the complexity of the model
grows.

AIC is generally regarded as the first model selection criterion.

It continues to be the most widely known and used model
selection tool among practitioners.



Advantages of AIC

Does not require the assumption that one of the candidate
models is the“true” or “correct” model.

All the models are treated symmetrically, unlike hypothesis
testing.

Can be used to compare nested as well as non-nested models.

Can be used to compare models based on different families of
probability distributions.

Disadvantages of AIC

Large data are required especially in complex modeling
frameworks.

Leads to an inconsistent model selection if there exists a true
model of finite order. That is, if k0 is the correct number of
parameters, and k̂ = ki (i = arg minj (−2`(θ̂j) + 2kj)), then

limn→∞ P (k̂ > k0) > 0. That is even if we have very large
number of observations, k̂ does not approach the true value.



Bayesian Information Criterion (BIC)

BIC is also known as the Schwarz Bayesian Criterion
−2`(θ̂j) + kj log n

BIC is consistent unlike AIC

Like AIC, the models need not be nested to use BIC

AIC penalizes free parameters less strongly than does the BIC

Conditions under which these two criteria are mathematically
justified are often ignored in practice.

Some practitioners apply them even in situations where they
should not be applied.

Caution

Sometimes these criteria are multiplied by −1 so the goal changes
to finding the maximizer.
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