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Model Fitting

@ Non-linear regression
@ Density (shape) estimation
@ Parameter estimation of the assumed model

@ Goodness of fit

Model Selection

@ Nested (In quasar spectrum, should one add a broad
absorption line BAL component to a power law continuum?
Are there 4 planets or 6 orbiting a star?)

@ Non-nested (is the quasar emission process a mixture of
blackbodies or a power law?).

@ Model misspecification




Model Fitting in Astronomy

@ Is the underlying nature of an X-ray stellar spectrum a
non-thermal power law or a thermal gas with absorption?

@ Are the fluctuations in the cosmic microwave background best
fit by Big Bang models with dark energy or with quintessence?

@ Are there interesting correlations among the properties of
objects in any given class (e.g. the Fundamental Plane of
elliptical galaxies), and what are the optimal analytical
expressions of such correlations?



Model Selection in Astronomy

@ Interpreting the spectrum of an accreting black hole such as a
quasar. Is it a nonthermal power law, a sum of featureless
blackbodies, and/or a thermal gas with atomic emission and
absorption lines?

@ Interpreting the radial velocity variations of a large sample of
solar-like stars. This can lead to discovery of orbiting systems
such as binary stars and exoplanets, giving insights into star
and planet formation.

@ Interpreting the spatial fluctuations in the cosmic microwave
background radiation. What are the best fit combinations of
baryonic, Dark Matter and Dark Energy components? Are Big
Bang models with quintessence or cosmic strings excluded?



A good model should be

Parsimonious (model simplicity)
Conform fitted model to the data (goodness of fit)
Easily generalizable.

Not under-fit that excludes key variables or effects

Not over-fit that is unnecessarily complex by including
extraneous explanatory variables or effects.

@ Under-fitting induces bias and over-fitting induces high
variability.

A good model should balance the competing objectives of
conformity to the data and parsimony. J




Chandra Orion Ultradeep Project (COUP)
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What is the underlying nature of a stellar spectrum?
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Successful model for high signal-to-noise X-ray spectrum.
Complicated thermal model with several temperatures
and element abundances (17 parameters)




doto ond folded maodel

counts/keV
600 800

400

200
T

053511.1-051935_qgrp10.pi
T v T —T

residuals
—-200 0 200 40D

_,__:I'Jr ) A}HJCH Hﬁ{HJidHJﬁﬁi_..:,___bw__.__ o __

+

2
channel energy (keV)

COUP source # 410 in Orion Nebula with 468 photons

Thermal model with absorption Ay ~ 1 mag
Fitting binned data using x?




Best-fit model: A plausible emission mechanism

@ Model assuming a single-temperature thermal plasma with
solar abundances of elements. The model has three free
parameters denoted by a vector 6.

e plasma temperature
o line-of-sight absorption
e normalization
@ The astrophysical model has been convolved with complicated
functions representing the sensitivity of the telescope and
detector.

@ The model is fitted by minimizing chi-square with an iterative
procedure.

g

N 2
5 .2 . . Yi — Mz(e)
0 = arg min x (0) = arg min Z.E_l <z .

Chi-square minimization is a misnomer. It is parameter estimation
by weighted least squares.



Limitations to x? ‘minimization’

e 6 6 o

Fails when bins have too few data points.
Binning is arbitrary. Binning involves loss of information.
Data should be independent and identically distributed.

Failure of i.i.d. assumption is common in astronomical data
due to effects of the instrumental setup; e.g. it is typical to
have > 3 pixels for each telescope point spread function (in an
image) or spectrograph resolution element (in a spectrum).
Thus adjacent pixels are not i.i.d.

Does not provide clear procedures for adjudicating between
models with different numbers of parameters (e.g. one- vs.
two-temperature models) or between different acceptable
models (e.g. local minima in x?(6) space).

Unsuitable to obtain confidence intervals on parameters when
complex correlations between the estimators of parameters are
present (e.g. non-parabolic shape near the minimum in x?()
space).



Alternative approach to the model fitting based on EDF

integral counts and folded model
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Fitting to unbinned EDF
Correct model family, incorrect parameter value
Thermal model with absorption set at Ay ~ 10 mag




integral counts and folded model
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Misspecified model family!
Power law model with absorption set at Ay ~ 1 mag
Can the power law model be excluded with 99% confidence




EDF based Goodness of Fit

@ Statistics based on EDF
© Kolmogorov-Smirnov Statistic
© Processes with estimated parameters

@ Bootstrap
@ Parametric bootstrap
@ Nonparametric bootstrap

@ Confidence Limits Under Model Misspecification



Empirical Distribution Function

Cumlative Fraction Plot
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Statistics based on EDF

Kolmogrov-Smirnov: D, = sup|F,(z) — F(z)|,
sgp(Fn(fU) — F(x))", SI;P(Fn(»”C) — F(z))~
H(y) = P(D, <y), 1-H(dn(a))=0a

Cramér-von Mises: /(Fn(x) — F(x))? dF (z)

(Fu() — F(x))°
Fa)(1 = F(z))

Anderson - Darling: / dF(z)

is more sensitive at tails.

@ These statistics are distribution free if F' is continuous &
univariate.

@ No longer distribution free if either F' is not univariate or
parameters of I’ are estimated.



K-S Confidence bands
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Kolmogorov-Smirnov Table

Table 1. Limiting Distribution of the KolmogorovSmirnov Statistic
(from Smirnov (1948))
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Multivariate Case

Example — Paul B. Simpson (1951)
F(z,y) = az’y + (1 — a)y’, 0<z,y<l
(X1,Y1) ~ F. F; denotes the EDF of (X1,Y)

P(|Fy(z,y) — F(z,y)| < .72, for all z,y)
>.065ifa=0, (F(z,y)=1y)

1
<.058ifa=.5, (F(z,y) = §xy(x +v))

v

Numerical Recipe’s treatment of a 2-dim KS test is mathematically
invalid.



Processes with estimated parameters

{F(:;0) : 0 € ©} — a family of continuous distributions
© is a open region in a p-dimensional space.
X1,...,X, sample from F'

Test F' = F(.;0) for some 6 = 6

Kolmogorov-Smirnov, Cramér-von Mises statistics, etc., when 6 is
estimated from the data, are continuous functionals of the
empirical process

0y, = 0,(X1,...,X,) is an estimator 6

F, — the EDF of X1,..., X,



Bootstrap

Gy, is an estimator of F', based X1,..., X,.
X7, ..., X iid. from Gy,
05 = 0,(X5,..., X7)

F(.;0) is Gaussian with 8 = (u, 0?)
If 6, = (X, s2), then
0 = (X5, s70)

Parametric bootstrap if G,, = F(.;6,)

Xi. ., X5 iid. F(;0,)

n

Nonparametric bootstrap if G,, = F,, (EDF)



Parametric bootstrap

A~

X{,..., X sample generated from F(.;0,,)
In Gaussian case 07 = (X, s*2).

Both

Vi sup |Fy(z) = F(z:0,)]

and R
Vn sup |F, (z) — F(x;0;,)]

have the same limiting distribution

In XSPEC package, the parametric bootstrap is command FAKEIT,
which makes Monte Carlo simulation of specified spectral model.

Numerical Recipes describes a parametric bootstrap (random
sampling of a specified pdf) as the ‘transformation method’ of
generating random deviates.




Nonparametric bootstrap

XT,..., X} sample from £},
i.e., a simple random sample from X1,..., X,.

Bias correction

is needed.

Both )
Vv sup |F,(z) — F(z;0,)|

and
sup [v/i (F7; (@) = F(a; 03)) — Bu(x)|

have the same limiting distribution.

XSPEC does not provide a nonparametric bootstrap capability )




Need for such bias corrections in special situations are well
documented in the bootstrap literature.

x? type statistics — (Babu, 1984, Statistics with linear
combinations of chi-squares as weak limit. Sankhya, Series A, 46,
85-93.)

U-statistics — (Arcones and Giné, 1992, On the bootstrap of U
and V statistics. The Ann. of Statist., 20, 655-674.)



Model misspecification

X1,...,X, data from unknown H.
H may or may not belong to the family {F(.;0) : 6 € O}
H is closest to F'(.,0p)

Kullback-Leibler information
[ () log ((x)/ f(x:0))du(z) > 0
[ [log h(z)|h(z)dv(z) < oo

[ h(z)log f(x;60)dv(z) = maxpeo [ h(z)log f(x;0)dv(x)



Confidence limits under model misspecification

Forany 0 < a <1,

P(y/nsup, |Fu(x) — F(x;0,) — (H(z) — F(x;60))| < Cf) —a — 0

Ca

is the a-th quantile of

~

sup, [v/n (Fy () — F(x;0%)) — vn(Fn(z) — F(z;0,))] J

This provide an estimate of the distance between the true
distribution and the family of distributions under consideration.



Similar conclusions can be drawn for von Mises-type distances

/ (Fu(x) — F(x;0,) — (H(z) — F(x:00)))* dF (x; 60),

~

/ (Fulw) - F(x30,) — (H(z) — F(x:60)))” dF (3 ,).

EDF based fitting requires little or no probability distributional
assumptions such as Gaussianity or Poisson structure.



Discussion so far

K-S goodness of fit is often better than Chi-square test.

K-S cannot handle heteroscadastic errors

Anderson-Darling is better in handling the tail part of the
distributions.

K-S probabilities are incorrect if the model parameters are
estimated from the same data.

K-S does not work in more than one dimension.

Bootstrap helps in the last two cases.
So far we considered model fitting part.

We shall now discuss model selection issues.



MLE and Model Selection

@ Model Selection Framework

@ Hypothesis testing for model selection: Nested models
© MLE based hypotheses tests

© Limitations

© Penalized likelihood

@ Information Criteria based model selection

o Akaike Information Criterion (AIC)

o Bayesian Information Criterion (BIC)



Model Selection Framework (based on likelihoods)

@ Observed data D
@ Mjy,..., My are models for D under consideration
o Likelihood f(D|6;; M;) and loglikelihood
0(6;) = log f(D|0j; M;) for model M;.
o f(D|6;; M;) is the probability density function (in the
continuous case) or probability mass function (in the discrete

case) evaluated at data D.
e 0; is a p; dimensional parameter vector.

D= (X1,...,X,), X;, i.id. N(u,0?) rv. Likelihood

f(Dlu,0%) = (2m0®) ™"/ exp {—i > (Xi— u)z}

Most of the methodology can be framed as a comparison between
two models M7 and Ms.



Hypothesis testing for model selection: Nested models

The model Mj is said to be nested in My, if some coordinates of
0, are fixed, i.e. the parameter vector is partitioned as

° 92 = (017")/) and 91 = (avaO)
@ 7 is some known fixed constant vector.

Comparison of M; and M5 can be viewed as a classical hypothesis
testing problem of Hy : v = ~p.

M, Gaussian with mean p and variance o2

M, Gaussian with mean 0 and variance o2

The model selection problem here can be framed in terms of
statistical hypothesis testing Hp : = 0, with free parameter o.

Hypothesis testing is a criteria used for comparing two models.
Classical testing methods are generally used for nested models.



MLE based hypotheses tests
Hoi0=th OMLE oot

£(0) loglikelihood at 0 Based on the (standardized)
distance between 6y and 0

Likelihood Ratio Test
Based on the distance from

A~

£(6o) to £(6).

N,

Loglikelihood

Rao Score Test

Based on the gradient of
the loglikelihood (called the
score function) at 6.

These three MLE based tests are equivalent to the first order of
asymptotics, but differ in the second order properties.
No single test among these is uniformly better than the others.



Wald Test Statistic

Wy, = (05, — 00)%/Var(8,) ~ x*
@ The standardized distance between 6y and the MLE én
@ In general Var(én) is unknown
o Var(f) ~ 1/1(6,), I(0) is the Fisher's information
o Wald test rejects Hy : 6 = 6y when 1(6,,)(0,, — 00)? is large.

Likelihood Ratio Test Statistic

£(6x) — £(60)

A

Rao’s Score (Lagrangian Multiplier) Test Statistic

f Xla 90
S(6o)
( 0 nI 90 <; XZ,G()
X1,...,X, are independent random variables with a common
probability density function f(.;6).

.




In the case of data from normal (Gaussian) distribution with

known variance o2,

1000 = o en{ =502} 160)= 5

.

Regression Context

Yi,--.,Yn data with Gaussian residuals, then the loglikelihood ¢ is

o 1 ,
(B) = 10gi1;[1 Tong P {—@(yi - XiB)Q}

.




Caution/Objections

@ Mj and Ms are not treated symmetrically as the null
hypothesis is Mj.

@ Cannot accept Hy
@ Can only reject or fail to reject Hy.

@ Larger samples can detect the discrepancies and more likely to
lead to rejection of the null hypothesis.



Penalized likelihood

@ If My is nested in Mo, then the largest likelihood achievable
by Ms will always be larger than that of M;.

@ Adding a penalty on larger models would achieve a balance
between over-fitting and under-fitting, leading to the so called
Penalized Likelihood approach.

@ Information criteria based model selection procedures are
penalized likelihood procedures.



Information Criteria based model selection

The traditional maximum likelihood paradigm provides a
mechanism for estimating the unknown parameters of a model
having a specified dimension and structure.

Hirotugu Akaike
(1927-2009) J

Akaike extended this paradigm in 1973 to the case, where the
model dimension is also unknown.



Akaike Information Criterion — (AIC)

@ Grounding in the concept of entropy, Akaike proposed
an information criterion (AIC), now popularly known as
Akaike Information Criterion, where both model estimation
and selection could be simultaneously accomplished.

~ A~

@ AIC for model M; is —2/((0;) + 2k;. The term 2{(6;) is known
as the goodness of fit term, and 2k; is known as the penalty.

@ The penalty term increase as the complexity of the model
grows.

o AIC is generally regarded as the first model selection criterion.

@ It continues to be the most widely known and used model
selection tool among practitioners.



Advantages of AIC

@ Does not require the assumption that one of the candidate
models is the “true” or “correct” model.

@ All the models are treated symmetrically, unlike hypothesis
testing.

@ Can be used to compare nested as well as non-nested models.

@ Can be used to compare models based on different families of
probability distributions.

.

Disadvantages of AIC

@ Large data are required especially in complex modeling
frameworks.

@ Leads to an inconsistent model selection if there exists a true
model of finite order. That is, if kg is the correct number of
parameters, and k = k; (i = arg min; (—26(@) + 2k;)), then
limy,—s 00 P(I;: > ko) > 0. That is even if we have very large
number of observations, k does not approach the true value.




Bayesian Information Criterion (BIC)

BIC is also known as the Schwarz Bayesian Criterion

A~

—25((9]') + k‘j logn
@ BIC is consistent unlike AIC

@ Like AIC, the models need not be nested to use BIC

@ AIC penalizes free parameters less strongly than does the BIC |

e Conditions under which these two criteria are mathematically
justified are often ignored in practice.

@ Some practitioners apply them even in situations where they
should not be applied.

Sometimes these criteria are multiplied by —1 so the goal changes
to finding the maximizer.
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