
Summer School in Statistics for Astronomers

Inference I:

Estimation, Confidence Intervals,

and Tests of Hypotheses
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Van den Bergh (1985, ApJ 297, p. 361)

considered the luminosity function (LF) for

globular clusters in various galaxies

V-d-B’s conclusion: The LF for clusters in the

Milky Way is

adequately described by a normal distribution

f(x) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]

M0 ≡ µ: Mean visual absolute magnitude

σ: Std. deviation of visual absolute magnitude

Magnitudes are log variables (a log-normal

distribution)
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Statistical Problems:

1. On the basis of collected data, estimate the

parameters µ and σ. Also, derive a plausible

range of values for each parameter; etc.

2. V-d-B, etc., conclude that the LF is

“adequately described” by a normal

distribution. How can we quantify the

plausibility of their conclusion?
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Here is a diagram from van den Bergh (1985),

providing complete data for the Milky Way

(notice that the data appear to be non-Gaussian)
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A second diagram from van den Bergh (1985);

truncated dataset for M31 (Andromeda galaxy)
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X: A random variable

Population: The collection of all values of X

f(x): The prob. density function (p.d.f.) of X

Statistical model: A choice of p.d.f. for X

We choose a model which “adequately describes”
data collected on X

Parameter: A number which describes a
property of the population

µ and σ are parameters for the p.d.f. of the
LF for Galactic globulars

Values of the chosen p.d.f. depend on X and
on the parameters: f(x;µ, σ)

Parameter space: The set of permissible values
of the parameters

Ω = {(µ, σ) : −∞ < µ <∞, σ > 0}
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Random sample

In practice: Data values x1, . . . , xn which are
fully representative of the population

In theory: Mutually independent random
variables X1, . . . , Xn which all have the same
distribution as X

Parameter: A number computable only from
the entire population

Statistic: A number computed from the
random sample X1, . . . , Xn

Sample mean: X̄ = 1
n

n∑
i=1

Xi

Sample variance: S2 = 1
n−1

n∑
i=1

(Xi − X̄)2

In general, a statistic is a fucntion
Y = U(X1, . . . , Xn) of the observations.

Sampling distribution: The probability
distribution of a statistic
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X: LF for globular clusters

Model: N(µ, σ2), the normal distribution with
mean µ and variance σ2

Problem: Given a random sample x1, . . . , xn,
estimate µ

x̄ is a very good estimate of µ

x̂, the sample median, is a good plausible
estimate of µ

x(n), the largest observed value in the LF, is
obviously a poor estimate of µ, since it almost
certainly is much larger than µ.

Statistics, like the sample mean x̄ and the
sample median x̂ are called point estimators of
µ

Roman letters are used to denote Data and
Greek letters to denote parameters.
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Let θ be a ‘generic’ parameter (for example, µ
or σ)

Y = u(X1, . . . , Xn), a function of the data;

Y is

(i) a point estimator of θ,

(ii) a random variable and therefore

(iii) has a probability distribution called the
sampling distribution of the statistic Y.

Conceptually, we can calculate the moments
of Y , including the mean E(Y ).

If E(Y ) = θ, then Y is said to be an unbiased
estimator of θ, for example x̄ is an unbiased
estimator of the population mean µ.

Intuitively, Y is unbiased if its long-term
average value is equal to θ
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Example: The Luminosity Function LF for glob-

ular clusters

The sample mean, X̄, is unbiased:

E(X̄) =
1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

µ = µ

Similarly, if the LF has a normal distribution

then x̂, the sample median, is an unbiased

estimate of µ also (based on the symmetry of

f(x)).

X(n): the largest observed LF

X(n) is not unbiased: E(X(n)) > µ
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We also want statistics which are “close” to θ

For all statistics Y , calculate E[(Y − θ)2], the
mean square error (MSE)

Choose as our point estimator the statistic for
which the MSE is smallest

A statistic Y which minimizes E[(Y − θ)2] is
said to have minimum mean square error

If Y is also unbiased then MSE = Var(Y ), and
Y is a minimum variance unbiased estimator
(MV UE)

Reminder: If R1, R2 are random variables and
a, b are constants then

E(aR1 + bR2) = aE(R1) + bE(R2).

If R1 and R2 are also independent then

Var(aR1 + bR2) = a2 Var(R1) + b2 Var(R2).
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Example: LF for globular clusters

X ∼ N(µ, σ2) = f(x : µ, σ)

Random sample of size n = 3: X1, X2, X3

Two point estimators of µ:

Sample mean: X̄ = 1
3(X1 +X2 +X3)

Place more weight on the last observation

A weighted average: Y = 1
6(X1 + 2X2 + 3X3)

Both estimators are unbiased: E(X̄) = µ, and

E(Y ) = 1
6E(X1 + 2X2 + 3X3)

= 1
6(µ+ 2µ+ 3µ) = µ
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However,

Var(X̄) =
1

32
(σ2 + σ2 + σ2) = 1

3σ
2,

while

Var(Y ) = 1
62Var(X1 + 2X2 + 3X3)

= 1
36(σ2 + 22σ2 + 32σ2) = 7

18σ
2

X̄ and Y are unbiased but Var(X̄) < Var(Y )

The distribution of X̄ is more concentrated

around µ than the distribution of Y

X̄ is a better estimator than Y

Note: For any sample size n, Var(X̄) = σ2

n
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Random sample: X1, . . . , Xn

Y = u(X1, . . . , Xn): An estimator of θ

Bear in mind that Y depends on n

It would be good if Y “converges” to θ as

n→∞

Y is consistent if, for any t > 0,

P (|Y − θ| ≥ t)→ 0

as n→∞

The Law of Large Numbers: If X1, . . . , Xn is a

random sample from X then for any t > 0,

P (|X̄ − µ| ≥ t)→ 0

as n→∞

Very Important Conclusion: For any

population, X̄ is a consistent estimator of µ.
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How do we construct good estimators?

Judicious guessing

The method of maximum likelihood

The method of moments

Bayesian methods

Decision-theoretic methods

Unbiased estimator

Consistent estimator

A consequence of Chebyshev’s inequality: If Y

is an unbiased estimator of θ and Var(Y ) → 0

as n→∞ then Y is consistent.
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The Method of Moments

X: Random variable with p.d.f. f(x; θ1, θ2)

Parameters to be estimated: θ1, θ2

Random sample: X1, . . . , Xn

1. Calculate the first two sample moments:

m1 =
1

n

n∑
i=1

Xi, m2 =
1

n

n∑
i=1

X2
i

2. Calculate E(X) and E(X2), the first two
population moments:

E(Xk) =
∫ ∞
−∞

xk f(x; θ1, θ2) dx

The results are in terms of θ1 and θ2

3. Solve for θ1, θ2 the simultaneous equations

E(X) = m1, E(X2) = m2

The solutions are the method-of-moments
estimators of θ1, θ2
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Example: LF for globular clusters

f(x;µ, σ2) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]

Random sample: X1, . . . , Xn

1. The first two sample moments:

m1 =
1

n

n∑
i=1

Xi = X̄

m2 =
1

n

n∑
i=1

X2
i =

n− 1

n
S2 + X̄2

2. The first two population moments:

E(X) =
∫ ∞
−∞

x f(x;µ, σ2) dx = µ

E(X2) =
∫ ∞
−∞

x2 f(x;µ, σ2) dx = µ2 + σ2

3. Solve: µ̂ = m1, µ̂2 + σ̂2 = m2

Solution: µ̂ = X̄, σ̂2 = m2 −m2
1 = n−1

n S2

µ̂ is unbiased; σ̂2 is not unbiased
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Hanes-Whittaker (1987), “Globular clusters as
extragalactic distance indicators ...,” AJ 94, p.
906

Ml: The absolute magnitude limit of the study

T : A parameter identifying the size of a cluster

Truncated normal distribution:

f(x;µ, σ2, T ) ∝


T√
2πσ

exp
[
−(x−µ)2

2σ2

]
, x ≤Ml

0, x > Ml

Method of moments: Calculate

1. The first three sample moments,

mk =
1

n

n∑
i=1

Xk
i , k = 1,2,3

2. The first three population moments

E(Xk) =
∫ ∞
−∞

xk f(x;µ, σ2, T ) dx

3. Solve the equations mk = E(Xk), k = 1,2,3
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Garcia-Munoz, et al. “The relative abundances
of the elements silicon through nickel in the low
energy galactic cosmic rays,” In: Proc. Int’l.
Cosmic Ray Conference, 1978

Measured abundances compared with propa-
gation calculations using distributions of path
lengths; data suggest an exponential distribu-
tion truncated at short path lengths

Protheroe, et al. “Interpretation of cosmic ray
composition - The path length distribution,”
ApJ., 247 1981

X: Length of paths

Parameters: θ1, θ2 > 0

Model:

f(x; θ1, θ2) =

θ
−1
1 exp[−(x− θ2)/θ1], x ≥ θ2

0, x < θ2
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LF for globular clusters in the Galaxy,

f(x) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]
Random sample: X1, . . . , Xn

X̄ is an unbiased estimator of µ

X̄ has minimum variance among all estimators

which are linear combinations of X1, . . . , Xn

S2 is an unbiased estimator of σ2

Given an actual data set, we calculate x̄ and

s2 to obtain point estimates of µ and σ2

Point estimates are not perfect

We wish to quantify their accuracy
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Confidence Intervals

LF for globular clusters in the Galaxy

X is N(µ, σ2)

Random sample: X1, . . . , Xn

X̄ is an unbiased estimator of µ: E(X̄) = µ

What is the probability distribution of X̄?

Let Y be a linear combination of independent
normal random variables. Then Y also has a
normal distribution.

Conclusion: X̄ has a normal distribution

E(X̄) = µ, Var(X̄) = σ2

n , so X̄ ∼ N(µ, σ
2

n ),

X̄ − µ
σ/
√
n
∼ N(0,1)
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Consult the tables of the N(0,1) distribution:

P (−1.96 < Z < 1.96) = 0.95

For LF data,

P

(
− 1.96 <

X̄ − µ
σ/
√
n
< 1.96

)
= 0.95

Assume that σ is known, σ = 1.2 mag for
Galactic globulars (van den Bergh , 1985)

Solve for µ the inequalities

−1.96 <
X̄ − µ
σ/
√
n
< 1.96

The solution is

X̄ − 1.96
σ
√
n
< µ < X̄ + 1.96

σ
√
n

P

(
X̄ − 1.96

σ
√
n
< µ < X̄ + 1.96

σ
√
n

)
= 0.95

22



The probability that the interval(
X̄ − 1.96

σ
√
n
, X̄ + 1.96

σ
√
n

)
“captures” µ is 0.95.

This interval is called a 95% confidence
interval for µ

It is a plausible range of values for µ together
with a quantifiable measure of its plausibility

Notes:

A confidence interval is a random interval; it
changes as the collected data changes. This
explains why we say “a 95% confidence
interval” rather than “the 95% confidence
interval”

We chose the “cutoff limits” ±1.96 symmet-
rically around 0 to minimize the length of the
confidence interval.

“Cutoff limits” are called “percentage points”
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Example (devised from van den Bergh, 1985):

n = 148 Galactic globular clusters

x̄ = −7.1 mag

We assume that σ = 1.2 mag

M0: The population mean visual absolute

magnitude

A 95% confidence interval for M0 is(
x̄− 1.96

σ
√
n
, x̄+ 1.96

σ
√
n

)
=

(
− 7.1− 1.96

1.2√
148

,−7.1 + 1.96
1.2√
148

)
= (−7.1∓ 0.193)

This is a plausible range of values for M0.
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The Warning: Don’t bet your life that your

95% confidence interval has captured µ (but

the odds are in your favor -19 to 1)

Intervals with higher levels of confidence, 90%,

98%, 99%, 99.9%, can be obtained similarly

Intervals with confidence levels 100(1 − α)%

are obtained by replacing the multiplier 1.96

in a 95% confidence by Zα/2, where Zα/2 is

determined by

P (−Zα/2 < Z < Zα/2) = 1− α;

a 95% confidence has α = 0.05.

90%, 98%, 99%, 99.9% confidence intervals

correspond to α = .10, .02, .01, and .001,

respectively; the corresponding values of

Zα/2 are 1.645,2.33,2.58, and 3.09,

respectively.
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If σ is unknown then the previous confidence

intervals are not useful

A basic principle in statistics: Replace any

unknown parameter with a good estimator

LF data problem; a random sample X1, . . . , Xn

drawn from N(µ, σ2)

We are tempted to construct confidence

intervals for µ using the statistic X̄−µ
S/
√
n

What is the sampling distribution of this

statistic? It is not normally distributed.

The t-distribution: If X1, . . . , Xn is a random

sample drawn from N(µ, σ2) then the statistic

T =
X̄ − µ
S/
√
n

has a t-distribution on n−1 degrees of freedom
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We construct confidence intervals as before

Suppose that n = 16, then see the tables of
the t-distribution on 15 degrees of freedom:

P (−2.131 < T15 < 2.131) = 0.95

Therefore

P

(
− 2.131 <

X̄ − µ
S/
√
n
< 2.131

)
= 0.95

Solve for µ in the inequalities

−2.131 <
X̄ − µ
S/
√
n
< 2.131

A 95% confidence interval for µ is(
X̄ − 2.131

S
√
n
, X̄ + 2.131

S
√
n

)

Example: n = 16, x̄ = −7.1 mag, s = 1.1 mag.

A 95% confidence interval for µ is −7.1∓0.586
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Normal population N(µ, σ2)

We want to obtain confidence intervals for σ

Random sample: X1, . . . , Xn

S2 is an unbiased and consistent estimator of
σ2

What is the sampling distribution of S2?

The chi-squared (χ2) distribution: (n−1)S2/σ2

has a chi-squared distribution on n−1 degrees
of freedom.

We now construct confidence intervals as
before

Consult the tables of the χ2 distribution

Find the percentage points, and solve the
various inequalities for σ2
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Denote the percentage points by a and b

P (a < χ2
n−1 < b) = 0.95

We find a, b using tables of the χ2 distribution

Solve for σ2 the inequalities: a < (n−1)S2

σ2 < b

A 95% confidence interval for σ2 is(
(n− 1)S2

b
,
(n− 1)S2

a

)

Example: n = 16, s = 1.2 mag

Percentage points from the χ2 tables (with 15
degrees of freedom): 6.262 and 27.49

Note: The percentage points are not
symmetric about 0

A 95% confidence interval for σ2 is(
15× (1.2)2

27.49
,
15× (1.2)2

6.262

)
= (0.786,3.449)
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All other things remaining constant:

The greater the level of confidence, the longer
the confidence interval

The larger the sample size, the shorter the
confidence interval

How do we choose n?

In our 95% confidence intervals for µ, the term
1.96σ/

√
n is called the margin of error

We choose n to have a desired margin of error

To have a margin of error of 0.01 mag then
we choose n so that

1.96σ
√
n

= 0.01

Solve this equation for n:

n =
(

1.96σ

0.01

)2
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Confidence intervals with large sample sizes

Papers on LF for globular clusters

Sample sizes are large: 68, 148, 300, 1000, ...

A modified Central Limit Theorem

X1, . . . , Xn: a random sample

µ: The population mean

X̄ and S: The sample mean and std. deviation

The modified CLT: If n is large then

X̄ − µ
S/
√
n
≈ N(0,1)

The conclusion does not depend on the
population probability distribution

The resulting confidence intervals for µ also
do not depend on the population probability
distribution
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Tests of Hypotheses

Alternatives to confidence intervals

A LF researcher believes that M0 = −7.7 mag
for the M31 globular clusters. The researcher
collects a random sample of data from M31

A natural question: “Are the data strongly in
support of the claim that M0 = −7.7 mag?”

Statistical hypothesis: A statement about the
parameters of a population.

Statistical test of significance: A procedure
for comparing observed data with a hypothesis
whose plausibility is to be assessed.

Null hypothesis: The statement being tested.

Alternative hypothesis: A competing statement.

In general, the alternative hypothesis is chosen
as the statement for which we hope to find
supporting evidence.
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In the case of our M31 LF researcher, the null

hypothesis is H0: M0 = −7.7

An alternative hypothesis is Ha: M0 6= −7.7

Two-sided alternative hypotheses

One-sided alternatives, e.g., Ha: M0 < −7.7

To test H0 vs. Ha, we need:

(a) A test statistic: This statistic will be

calculated from the observed data, and will

measure the compatibility of H0 with the

observed data. It will have a sampling

distribution free of unknown parameters.

(b) A rejection rule which specifies the values

of the test statistic for which we reject H0.
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Example: A random sample of 64 measure-
ments has mean x̄ = 5.2 and std. dev. s = 1.1.
Test the null hypothesis H0 : µ = 4.9 against
the alternative hypothesis Ha : µ 6= 4.9

1. The null and alternative hypotheses:
H0 : µ = 4.9, Ha : µ 6= 4.9

2. The test statistic:

T =
X̄ − 4.9

S/
√
n

3. The distribution of the test statistic under
the assumption that H0 is valid: T ≈ N(0,1)

4. The rejection rule:
Reject H0 if |T | > 1.96, the upper 95%

percentage point in the tables of the standard
normal distribution. Otherwise, we fail to
reject H0.

This cutoff point is also called a critical value.

This choice of critical value results in a 5%
level of significance of the test of hypotheses.
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5. Calculate the value of the test statistic:

The calculated value of the test statistic is

x̄− 4.9

s/
√
n

=
5.2− 4.9

1.1/
√

64
= 2.18

6. Decision:

We reject H0; the calculated value of the

test statistic exceeds the critical value, 1.96.

We report that the data are significant and

that there is a statistically significant difference

between the population mean and the

hypothesized value of 4.9

7. The P -value of the test:

The smallest significance level at which the

data are significant.
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